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add_pmap Add physical map contents to tibble

Description

Add physical map contents to tibble

Usage

add_pmap(tib, pmap)
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Arguments

tib a tibble with 3 columns: marker, trace, and profile lod values, typically outputted
by calc_profile_lods()

pmap a physical map for a single chromosome

Value

a tibble with 4 columns: marker, trait, profile_lod, marker_position

Examples

pm <- 1:3
names(pm) <- as.character(paste0('m', 1:3))
expand.grid(paste0('m', 1:3), paste0('m', 1:3)) %>%

tibble::as_tibble() %>%
dplyr::mutate(log10lik = rgamma(9, 5)) %>%
calc_profile_lods() %>%
add_pmap(pm)

boot_pvl Perform bootstrap sampling and calculate test statistic for each boot-
strap sample

Description

Create a bootstrap sample, perform multivariate QTL scan, and calculate log10 LRT statistic

Usage

boot_pvl(
probs,
pheno,
addcovar = NULL,
kinship = NULL,
start_snp = 1,
n_snp,
pleio_peak_index,
nboot = 1,
max_iter = 10000,
max_prec = 1/1e+08,
cores = 1

)
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Arguments

probs founder allele probabilities three-dimensional array for one chromosome only
(not a list)

pheno n by d matrix of phenotypes

addcovar n by c matrix of additive numeric covariates

kinship a kinship matrix, not a list

start_snp positive integer indicating index within probs for start of scan

n_snp number of (consecutive) markers to use in scan

pleio_peak_index

positive integer index indicating genotype matrix for bootstrap sampling. Typi-
cally acquired by using ‘find_pleio_peak_tib‘.

nboot number of bootstrap samples to acquire and scan

max_iter maximum number of iterations for EM algorithm

max_prec stepwise precision for EM algorithm. EM stops once incremental difference in
log likelihood is less than max_prec

cores number of cores to use when calling mclapply to parallelize the bootstrap anal-
ysis.

Details

Performs a parametric bootstrap method to calibrate test statistic values in the test of pleiotropy
vs. separate QTL. It begins by inferring parameter values at the ‘pleio_peak_index‘ index value
in the object ‘probs‘. It then uses these inferred parameter values in sampling from a multivariate
normal distribution. For each of the ‘nboot‘ sampled phenotype vectors, a two-dimensional QTL
scan, starting at the marker indexed by ‘start_snp‘ within the object ‘probs‘ and extending for a
total of ‘n_snp‘ consecutive markers. The two-dimensional scan is performed via the function
‘scan_pvl_clean‘. For each two-dimensional scan, a log10 likelihood ratio test statistic is calculated.
The outputted object is a vector of ‘nboot‘ log10 likelihood ratio test statistics from ‘nboot‘ distinct
bootstrap samples.

Value

numeric vector of (log) likelihood ratio test statistics from ‘nboot_per_job‘ bootstrap samples

References

Knott SA, Haley CS (2000) Multitrait least squares for quantitative trait loci detection. Genetics
156: 899–911.

Walling GA, Visscher PM, Haley CS (1998) A comparison of bootstrap methods to construct con-
fidence intervals in QTL mapping. Genet. Res. 71: 171–180.
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Examples

n <- 50
pheno <- matrix(rnorm(2 * n), ncol = 2)
rownames(pheno) <- paste0("s", 1:n)
colnames(pheno) <- paste0("tr", 1:2)
probs <- array(dim = c(n, 2, 5))
probs[ , 1, ] <- rbinom(n * 5, size = 1, prob = 0.2)
probs[ , 2, ] <- 1 - probs[ , 1, ]
rownames(probs) <- paste0("s", 1:n)
colnames(probs) <- LETTERS[1:2]
dimnames(probs)[[3]] <- paste0("m", 1:5)
boot_pvl(probs = probs, pheno = pheno,

start_snp = 1, n_snp = 5, pleio_peak_index = 3, nboot = 1, cores = 1)

calc_Bhat Calculate estimated allele effects, B matrix

Description

Calculate estimated allele effects, B matrix

Usage

calc_Bhat(X, Sigma_inv, Y)

Arguments

X dn by df block-diagonal design matrix that incorporates genetic info for d mark-
ers. Note that we can use the same marker data twice.

Sigma_inv dn by dn inverse covariance matrix, often composed as the inverse of K ⊗ Vg +
In ⊗ Ve

Y dn by 1 matrix, ie, a column vector, of d phenotypes’ measurements

Value

a df by 1 matrix of GLS-estimated allele effects

Examples

X1 <- as.matrix(rbinom(n = 100, size = 1, prob = 1 / 2))
X <- gemma2::stagger_mats(X1, X1)
Sigma_inv <- diag(200)
Y <- runif(200)
calc_Bhat(X, Sigma_inv, Y)
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calc_covs Calculate Vg and Ve from d-variate phenotype and kinship

Description

Calculate Vg and Ve from d-variate phenotype and kinship

Usage

calc_covs(
pheno,
kinship,
X1pre = rep(1, nrow(kinship)),
max_iter = 1e+06,
max_prec = 1/1e+08,
covariates = NULL

)

Arguments

pheno n by d matrix of phenotypes

kinship a kinship matrix, n by n

X1pre n by c design matrix. c = 1 to ignore genotypes

max_iter maximum number of EM iterations

max_prec maximum precision for stepwise increments in EM algorithm

covariates a n by n.cov matrix of numeric covariates

Value

a list with 2 named components, Vg and Ve. Each is a d by d covariance matrix.

Examples

calc_covs(pheno = matrix(data = rnorm(100), nrow = 50, ncol = 2), kinship = diag(50))

calc_invsqrt_mat Calculate matrix inverse square root for a covariance matrix

Description

Calculate matrix inverse square root for a covariance matrix

Usage

calc_invsqrt_mat(A)
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Arguments

A covariance matrix

calc_lrt_tib Calculate a likelihood ratio test statistic from the output of scan_pvl()

Description

Calculate a likelihood ratio test statistic from the output of scan_pvl()

Usage

calc_lrt_tib(scan_pvl_out)

Arguments

scan_pvl_out outputted tibble from scan_pvl

Value

a number, the (log) likelihood ratio test statistic

Examples

rep(paste0('Marker', 1:3), times = 3) -> marker1
rep(paste0('Marker', 1:3), each = 3) -> marker2
runif(9, -1, 0) -> ll
tibble::tibble(marker1, marker2, ll) -> scan_out
calc_lrt_tib(scan_out)

calc_profile_lods Calculate profile lods for all traits

Description

Calculate profile lods for all traits

Usage

calc_profile_lods(scan_pvl_out)

Arguments

scan_pvl_out tibble outputted from scan_pvl

Value

a tibble with 3 columns, indicating ’marker identity, trace (pleiotropy or profile1, profile2, etc.), and
value of the profile lod (base 10) for that trace at that marker.
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calc_Sigma Calculate the phenotypes covariance matrix Sigma

Description

Calculate the phenotypes covariance matrix Sigma

Usage

calc_Sigma(Vg, Ve, kinship = NULL, n_mouse = nrow(kinship))

Arguments

Vg d by d genetic covariance matrix for the d phenotypes

Ve d by d error covariance matrix for the d phenotypes

kinship optional n by n kinship matrix. if NULL, Vg is not used.

n_mouse number of subjects

Value

dn by dn covariance matrix

calc_sqrt_mat Calculate matrix square root for a covariance matrix

Description

Calculate matrix square root for a covariance matrix

Usage

calc_sqrt_mat(A)

Arguments

A covariance matrix
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check_identical Check whether a vector, x, has all its entries equal to its first entry

Description

Check whether a vector, x, has all its entries equal to its first entry

Usage

check_identical(x)

Arguments

x a vector

Value

a logical indicating whether all vector entries are the same

Examples

x <- 1:5
check_identical(x)
y <- rep(1, 5)
check_identical(y)

check_missingness Check for missingness in phenotypes or covariates

Description

We use ‘is.finite‘ from base R to identify those subjects that have one or more missing values
in ‘input_matrix‘. We then return a character vector of subjects that have no missingness in ‘in-
put_matrix‘.

Usage

check_missingness(input_matrix)

Arguments

input_matrix phenotypes or covariates matrix

Value

character vector of subjects that have no missingness
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convert_to_scan1_output

Convert ‘scan_multi_oneqtl‘ output of ‘qtl2::scan1‘ output

Description

We convert output of ‘scan_multi_oneqtl‘ into format outputted by ‘qtl2::scan1‘.

Usage

convert_to_scan1_output(sm_output, trait_name)

Arguments

sm_output tibble output from scan_multi_oneqtl for one chromosome only

trait_name character vector (of length one) specifying the trait names

Value

object of class ‘scan1‘

Examples

# read data
iron <- qtl2::read_cross2(system.file("extdata", "iron.zip", package="qtl2"))

# insert pseudomarkers into map
map <- qtl2::insert_pseudomarkers(iron$gmap, step=1)

# calculate genotype probabilities
probs <- qtl2::calc_genoprob(iron, map, error_prob=0.002)

# grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno
covar <- match(iron$covar$sex, c("f", "m")) # make numeric
names(covar) <- rownames(iron$covar)
Xcovar <- qtl2::get_x_covar(iron)

aprobs <- qtl2::genoprob_to_alleleprob(probs)
sm_out <- scan_multi_oneqtl(probs = aprobs, pheno = pheno)
sm_to_s1 <- convert_to_scan1_output(sm_out[[1]], trait_name = "tr1and2")

# 95% Bayes credible interval for QTL on chr 7, first phenotype
qtl2::bayes_int(sm_to_s1, map)
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find_pleio_peak_tib Find the marker index corresponding to the peak of the pleiotropy
trace in a tibble where the last column contains log likelihood val-
ues and the first d columns contain marker ids

Description

Find the marker index corresponding to the peak of the pleiotropy trace in a tibble where the last
column contains log likelihood values and the first d columns contain marker ids

Usage

find_pleio_peak_tib(tib, start_snp)

Arguments

tib a (d+1) column tibble with first d columns containing marker ids and the last
containing log likelihood values. Typically this is the output from ‘scan_pvl‘.

start_snp positive integer, from the two-dimensional scan, that indicates where the scan
started on the chromosome

Value

positive integer indicating marker index for maximum value of log lik under pleiotropy

Examples

marker1 <- rep(paste0('SNP', 1:3), times = 3)
marker2 <- rep(paste0('SNP', 1:3), each = 3)
loglik <- runif(9, -5, 0)
tibble::tibble(marker1, marker2, loglik) -> tib
find_pleio_peak_tib(tib, start_snp = 1)

fit1_pvl Fit a model for a specified d-tuple of markers

Description

‘fit1_pvl‘ uses several functions in the package qtl2pleio to fit the linear mixed effects model for a
single d-tuple of markers. Creation of ‘fit1_pvl‘ - from code that originally resided in ‘scan_pvl‘,
enabled parallelization via the ‘parallel‘ R package.

Usage

fit1_pvl(indices, start_snp, probs, addcovar, inv_S, S, pheno)
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Arguments

indices a vector of indices for extracting elements of ‘probs‘ array

start_snp an integer to specify the index of the marker where the scan - in call to scan_pvl
- starts. This argument is needed because ‘mytab‘ has only relative indices (rel-
ative to the ‘start_snp‘ marker)

probs founder allele probabilities array

addcovar additive covariates matrix

inv_S inverse covariance matrix for the vectorized phenotype

S covariance matrix for the vectorized phenotype, ie, the inverse of inv_S. By
making this a function input, we avoid inverting the matrix many many times.

pheno a n by d phenotypes matrix

Value

a number, the log-likelihood for the specified model

Examples

n <- 50
pheno <- matrix(rnorm(2 * n), ncol = 2)
Vg <- diag(2)
Ve <- diag(2)
Sigma <- calc_Sigma(Vg, Ve, diag(n))
Sigma_inv <- solve(Sigma)
probs <- array(dim = c(n, 2, 5))
probs[ , 1, ] <- rbinom(n * 5, size = 1, prob = 0.2)
probs[ , 2, ] <- 1 - probs[ , 1, ]
mytab <- prep_mytab(d_size = 2, n_snp = 5)
fit1_pvl(mytab[1, ], start_snp = 1,
probs = probs, addcovar = NULL, inv_S = Sigma_inv,
S = Sigma,
pheno = pheno
)

get_effects Extract founder allele effects at a single marker from output of
qtl2::scan1coef

Description

Extract founder allele effects at a single marker from output of qtl2::scan1coef

Usage

get_effects(marker_index, allele_effects_matrix, map, columns = 1:8)
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Arguments

marker_index an integer indicating where in the ‘map‘ object the peak position (or position of
interest) is located

allele_effects_matrix

output of ‘qtl2::scan1coef‘ for a single chromosome

map a map object for the chromosome of interest

columns which columns to choose within the ‘allele_effects_matrix‘. Default is 1:8 to
reflect 8 founder alleles of Diversity Outbred mice

Value

a vector of 8 founder allele effects at a single marker

a vector of founder allele effects at a single marker

Examples

# set up allele effects matrix
ae <- matrix(dat = rnorm(100 * 8), ncol = 8, nrow = 100)
ae[, 8] <- - rowSums(ae[, 1:7])
colnames(ae) <- LETTERS[1:8]
rownames(ae) <- paste0(1, "_", 1:100)
# set up map
map <- 1:100
names(map) <- rownames(ae)
# call get_effects
get_effects(marker_index = 15, allele_effects_matrix = ae, map = map)

make_id2keep Identify shared subject ids among all inputs: covariates, allele proba-
bilities array, kinship, and phenotypes

Description

We consider only those inputs that are not NULL. We then use ‘intersect‘ on pairs of inputs’ row-
names to identify those subjects are shared among all non-NULL inputs.

Usage

make_id2keep(probs, pheno, addcovar = NULL, kinship = NULL)

Arguments

probs an allele probabilities array

pheno a phenotypes matrix

addcovar a covariates matrix

kinship a kinship matrix
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Value

a character vector of subject IDs common to all (non-null) inputs

plot_pvl Plot tidied results of a pvl scan

Description

Plot tidied results of a pvl scan

Usage

plot_pvl(
dat,
units = "Mb",
palette = c("#999999", "#E69F00", "#56B4E9"),
linetype = c("solid", "longdash", "dotted")

)

Arguments

dat a profile lod tibble

units a character vector of length one to indicate units for physical or genetic map

palette a character vector of length 3 containing strings for colors

linetype a character vector of length 3 specifying the linetype values for the 3 traces

Value

a ggplot object with profile LODs

prep_mytab Prepare mytab object for use within scan_pvl R code

Description

Prepare mytab object for use within scan_pvl R code

Usage

prep_mytab(d_size, n_snp, pvl = TRUE)
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Arguments

d_size an integer, the number of traits

n_snp an integer, the number of markers

pvl logical indicating whether to output dataframe with all d-tuples for a d-QTL
scan, or only those models that examine one marker at a time.

Value

a data.frame with d_size + 1 columns and (n_snp)^d_size rows. Last column is NA and named
loglik.

Examples

prep_mytab(2, 10)

prep_X_list Create a list of component X matrices for input to stagger_mats, to
ultimately create design matrix

Description

Create a list of component X matrices for input to stagger_mats, to ultimately create design matrix

Usage

prep_X_list(indices, start_snp, probs, covariates)

Arguments

indices a vector of integers

start_snp an integer denoting the index (within genotype probabilities array) where the
scan should start

probs a three-dimensional array of genotype probabilities for a single chromosome

covariates a matrix of covariates

Value

a list of design matrices, ultimately useful when constructing the (multi-locus) design matrix

Examples

pp <- array(rbinom(n = 200, size = 1, prob = 0.5), dim = c(10, 2, 10))
prep_X_list(1:3, 1, probs = pp, covariates = NULL)
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process_inputs Process inputs to scan functions

Description

Process inputs to scan functions

Usage

process_inputs(
probs,
pheno,
addcovar,
kinship,
n_snp = dim(probs)[3],
start_snp = 1,
max_iter = 10^4,
max_prec = 1/10^8

)

Arguments

probs a three-dimensional array of founder allele probabilities

pheno a matrix of d trait values

addcovar a matrix of covariates

kinship a kinship matrix

n_snp number of markers

start_snp index number of start position in the probs object.

max_iter max number of iterations for EM

max_prec max precision for stopping EM

qtl2pleio qtl2pleio.

Description

Testing pleiotropy vs. separate QTL in multiparental populations
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rcpp_calc_Bhat Estimate allele effects matrix, B hat, with Rcpp functions

Description

Estimate allele effects matrix, B hat, with Rcpp functions

Usage

rcpp_calc_Bhat(X, Sigma_inv, Y)

Arguments

X dn by df block-diagonal design matrix that incorporates genetic info for two
markers. Note that we can use the same marker data twice.

Sigma_inv dn by dn inverse covariance matrix, where its inverse, ie, Sigma, is often com-
posed as K ⊗ Vg + In ⊗ Ve

Y dn by 1 matrix, ie, a column vector, of d phenotypes’ measurements

Value

a df by 1 matrix of GLS-estimated allele effects

Examples

X1 <- as.matrix(rbinom(n = 100, size = 1, prob = 1 / 2))
X <- gemma2::stagger_mats(X1, X1)
Sigma_inv <- diag(200)
Y <- runif(200)
rcpp_calc_Bhat(X = X, Sigma_inv = Sigma_inv, Y = Y)

rcpp_calc_Bhat2 Estimate allele effects matrix, B hat, with Rcpp functions

Description

Estimate allele effects matrix, B hat, with Rcpp functions

Usage

rcpp_calc_Bhat2(X, Y, Sigma_inv)
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Arguments

X dn by df block-diagonal design matrix that incorporates genetic info for two
markers. Note that we can use the same marker data twice.

Y dn by 1 matrix, ie, a column vector, of d phenotypes’ measurements

Sigma_inv dn by dn inverse covariance matrix, often composed as inverse of K⊗Vg+In⊗
Vg

Value

a df by 1 matrix of GLS-estimated allele effects

Examples

X1 <- as.matrix(rbinom(n = 100, size = 1, prob = 1 / 2))
X <- gemma2::stagger_mats(X1, X1)
Sigma_inv <- diag(200)
Y <- runif(200)
rcpp_calc_Bhat2(X = X, Y = Y, Sigma_inv = Sigma_inv)

rcpp_log_dmvnorm2 Calculate log likelihood for a multivariate normal

Description

Calculate log likelihood for a multivariate normal

Usage

rcpp_log_dmvnorm2(inv_S, mu, x, S)

Arguments

inv_S inverse covariance matrix

mu mean vector

x data vector

S covariance matrix, ie, the inverse of inv_S
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scan_multi_onechr Perform multivariate, one-QTL model fitting for markers on one chro-
mosome

Description

‘scan_multi_onechr‘ calculates log likelihood for d-variate phenotype model fits. Inputted parame-
ter ‘start_snp‘ indicates where in the ‘probs‘ object to start the scan.

Usage

scan_multi_onechr(
probs,
pheno,
kinship = NULL,
addcovar = NULL,
start_snp = 1,
n_snp = dim(probs)[3],
max_iter = 10000,
max_prec = 1/1e+08,
cores = 1

)

Arguments

probs an array of founder allele probabilities for a single chromosome

pheno a matrix of phenotypes

kinship a kinship matrix for one chromosome

addcovar a matrix, n subjects by c additive covariates

start_snp index of where to start the scan within probs

n_snp the number of (consecutive) markers to include in the scan

max_iter maximum number of iterations for EM algorithm

max_prec stepwise precision for EM algorithm. EM stops once incremental difference in
log likelihood is less than max_prec

cores number of cores for parallelization

Value

a tibble with d + 1 columns. First d columns indicate the genetic data (by listing the marker ids)
used in the design matrix; last is log10 likelihood



20 scan_multi_oneqtl
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Examples

# read data
n <- 50
pheno <- matrix(rnorm(2 * n), ncol = 2)
rownames(pheno) <- paste0("s", 1:n)
colnames(pheno) <- paste0("tr", 1:2)
probs <- array(dim = c(n, 2, 5))
probs[ , 1, ] <- rbinom(n * 5, size = 1, prob = 0.2)
probs[ , 2, ] <- 1 - probs[ , 1, ]
rownames(probs) <- paste0("s", 1:n)
colnames(probs) <- LETTERS[1:2]
dimnames(probs)[[3]] <- paste0("m", 1:5)
scan_multi_onechr(probs = probs, pheno = pheno, kinship = NULL, cores = 1)

scan_multi_oneqtl Perform multivariate, one-QTL model fitting for markers on all chro-
mosomes

Description

The function first discards individuals with one or more missing phenotypes or missing covariates. It
then infers variance components, Vg and Ve. Both Vg and Ve are d by d covariance matrices. It uses
an expectation maximization algorithm, as implemented in the ‘gemma2‘ R package. ‘gemma2‘ R
package is an R implementation of the GEMMA algorithm for multivariate variance component
estimation (Zhou & Stephens 2014 Nature methods). Note that variance components are fitted on
a model that uses the d-variate phenotype but contains no genetic information. This model does,
however, use the specified covariates (after dropping dependent columns in the covariates matrix).
These inferred covariance matrices, V̂ g and V̂ e, are then used in subsequent model fitting via
generalized least squares. Generalized least squares model fitting is applied to every marker on
every chromosome. For a single marker, we fit the model:

vec(Y ) = Xvec(B) + vec(G) + vec(E)

where
G ∼ MN(0,K, V̂ g)
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and
E ∼ MN(0, I, V̂ e)

where MN denotes the matrix-variate normal distribution with three parameters: mean matrix,
covariance among rows, and covariance among columns. vec denotes the vectorization operation,
ie, stacking by columns. K is a kinship matrix, typically calculated by leave-one-chromosome-out
methods. Y is the n by d phenotypes matrix. X is a block-diagonal nd by fd matrix consisting of d
blocks each of dimension n by f. Each n by f block (on the diagonal) contains a matrix of founder
allele probabilities for the n subjects at a single marker. The off-diagonal blocks have only zero
entries. The log-likelihood is returned for each model. The outputted object is a tibble with d + 1
columns. The first d columns specify the markers used in the corresponding model fit, while the
last column specifies the log-likelihood value at that d-tuple of markers.

Usage

scan_multi_oneqtl(
probs_list,
pheno,
kinship_list = NULL,
addcovar = NULL,
cores = 1

)

Arguments

probs_list an list of arrays of founder allele probabilities

pheno a matrix of phenotypes

kinship_list a list of kinship matrices, one for each chromosome

addcovar a matrix, n subjects by c additive covariates

cores number of cores for parallelization via parallel::mclapply()

Value

a tibble with d + 1 columns. First d columns indicate the genetic data (by listing the marker ids)
used in the design matrix; last is log10 likelihood
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Examples

# read data
n <- 50
pheno <- matrix(rnorm(2 * n), ncol = 2)
rownames(pheno) <- paste0("s", 1:n)
colnames(pheno) <- paste0("tr", 1:2)
probs <- array(dim = c(n, 2, 5))
probs[ , 1, ] <- rbinom(n * 5, size = 1, prob = 0.2)
probs[ , 2, ] <- 1 - probs[ , 1, ]
rownames(probs) <- paste0("s", 1:n)
colnames(probs) <- LETTERS[1:2]
dimnames(probs)[[3]] <- paste0("m", 1:5)
scan_multi_oneqtl(probs_list = list(probs, probs), pheno = pheno, cores = 1)

scan_multi_oneqtl_perm

Permute the phenotypes matrix and then scan the genome. Record the
genomewide greatest LOD score for each permuted data set.

Description

Permute the phenotypes matrix and then scan the genome. Record the genomewide greatest LOD
score for each permuted data set.

Usage

scan_multi_oneqtl_perm(
probs_list,
pheno,
kinship_list = NULL,
addcovar = NULL,
n_perm = 1,
cores = 1

)

Arguments

probs_list a list of founder allele probabilities, one array per chromosome
pheno a matrix of trait values
kinship_list a list of kinship matrices, one per chromosome
addcovar a matrix of covariate values
n_perm positive integer for the number of permuted data sets to scan.
cores number of cores for parallelization

Value

a vector of ‘n_perm‘ max lod statistics
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scan_pvl Perform model fitting for all ordered pairs of markers in a genomic
region of interest

Description

‘scan_pvl‘ calculates log likelihood for d-variate phenotype model fits. Inputted parameter ‘start_snp‘
indicates where in the ‘probs‘ object to start the scan.

Usage

scan_pvl(
probs,
pheno,
kinship = NULL,
addcovar = NULL,
start_snp = 1,
n_snp,
max_iter = 10000,
max_prec = 1/1e+08,
cores = 1

)

Arguments

probs an array of founder allele probabilities for a single chromosome

pheno a matrix of phenotypes

kinship a kinship matrix for one chromosome

addcovar a matrix, n subjects by c additive covariates

start_snp index of where to start the scan within probs

n_snp the number of (consecutive) markers to include in the scan

max_iter maximum number of iterations for EM algorithm

max_prec stepwise precision for EM algorithm. EM stops once incremental difference in
log likelihood is less than max_prec

cores number of cores to use when parallelizing via parallel::mclapply. Set to 1 for no
parallelization.

Details

The function first discards individuals with one or more missing phenotypes or missing covariates. It
then infers variance components, Vg and Ve. Both Vg and Ve are d by d covariance matrices. It uses
an expectation maximization algorithm, as implemented in the ‘gemma2‘ R package. ‘gemma2‘ R
package is an R implementation of the GEMMA algorithm for multivariate variance component
estimation (Zhou & Stephens 2014 Nature methods). Note that variance components are fitted on
a model that uses the d-variate phenotype but contains no genetic information. This model does,



24 scan_pvl

however, use the specified covariates (after dropping dependent columns in the covariates matrix).
These inferred covariance matrices, V̂ g and V̂ e, are then used in subsequent model fitting via
generalized least squares. Generalized least squares model fitting is applied to every d-tuple of
markers within the specified genomic region for ‘scan_pvl‘. For a single d-tuple of markers, we fit
the model:

vec(Y ) = Xvec(B) + vec(G) + vec(E)

where
G ∼ MN(0,K, V̂ g)

and
E ∼ MN(0, I, V̂ e)

where MN denotes the matrix-variate normal distribution with three parameters: mean matrix,
covariance among rows, and covariance among columns. vec denotes the vectorization operation,
ie, stacking by columns. K is a kinship matrix, typically calculated by leave-one-chromosome-out
methods. Y is the n by d phenotypes matrix. X is a block-diagonal nd by fd matrix consisting of d
blocks each of dimension n by f. Each n by f block (on the diagonal) contains a matrix of founder
allele probabilities for the n subjects at a single marker. The off-diagonal blocks have only zero
entries. The log-likelihood is returned for each model. The outputted object is a tibble with d + 1
columns. The first d columns specify the markers used in the corresponding model fit, while the
last column specifies the log-likelihood value at that d-tuple of markers.

Value

a tibble with d + 1 columns. First d columns indicate the genetic data (by listing the marker ids)
used in the design matrix; last is log10 likelihood
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Examples

# read data
n <- 50
pheno <- matrix(rnorm(2 * n), ncol = 2)
rownames(pheno) <- paste0("s", 1:n)
colnames(pheno) <- paste0("tr", 1:2)
probs <- array(dim = c(n, 2, 5))
probs[ , 1, ] <- rbinom(n * 5, size = 1, prob = 0.2)
probs[ , 2, ] <- 1 - probs[ , 1, ]
rownames(probs) <- paste0("s", 1:n)
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colnames(probs) <- LETTERS[1:2]
dimnames(probs)[[3]] <- paste0("m", 1:5)
scan_pvl(probs = probs, pheno = pheno, kinship = NULL,
start_snp = 1, n_snp = 5, cores = 1)

sim1 Simulate a single multivariate data set consisting of n subjects and d
phenotypes for each

Description

Simulate a single multivariate data set consisting of n subjects and d phenotypes for each

Usage

sim1(X, B, Sigma)

Arguments

X design matrix (incorporating genotype probabilities from two loci), dn by df

B a matrix of allele effects, f rows by d columns

Sigma dn by dn covariance matrix

Value

a vector of length dn. The first n entries are for trait 1, the second n for trait 2, etc.

Examples

n_mouse <- 20
geno <- rbinom(n = n_mouse, size = 1, prob = 1 / 2)
X <- gemma2::stagger_mats(geno, geno)
B <- matrix(c(1, 2), ncol = 2, nrow = 1)
sim1(X, B, Sigma = diag(2 * n_mouse))

subset_input Subset an input object - allele probabilities array or phenotypes matrix
or covariates matrix. Kinship has its own subset function

Description

An inputted matrix or 3-dimensional array is first subsetted - by rownames - to remove those sub-
jects who are not in ‘id2keep‘. After that, the object’s rows are ordered to match the ordering of
subject ids in the vector ‘id2keep‘. This (possibly reordered) object is returned.
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Usage

subset_input(input, id2keep)

Arguments

input a matrix of either phenotypes or covariates or array of allele probabilities

id2keep a character vector of subject ids to identify those subjects that are shared by all
inputs

Value

an object resulting from subsetting of ‘input‘. Its rows are ordered per ‘id2keep‘

Examples

# define s_id
s_id <- paste0("s", 1:10)
# set up input matrix
foo <- matrix(data = rnorm(10 * 3), nrow = 10, ncol = 3)
rownames(foo) <- s_id
subset_input(input = foo, id2keep = s_id)

subset_kinship Subset a kinship matrix to include only those subjects present in all
inputs

Description

Since a kinship matrix has subject ids in both rownames and colnames, so we need to remove rows
and columns according to names in ‘id2keep‘. We first remove rows and columns of subjects that
are not in ‘id2keep‘. We then order rows and columns of the resulting matrix by the ordering in
‘id2keep‘.

Usage

subset_kinship(kinship, id2keep)

Arguments

kinship a kinship matrix

id2keep a character vector of subject ids to identify those subjects that are shared by all
inputs
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